Multiple Positive Solutions for m-Point Boundary Value Problem on Time Scales

نویسندگان

  • Jie Liu
  • Hong-Rui Sun
  • Feliz Manuel Minhós
چکیده

The purpose of this article is to establish the existence of multiple positive solutions of the dynamic equation on time scales φ uΔ t ∇ h t f t, u t , uΔ t 0, t ∈ 0, T T , subject to the multipoint boundary condition uΔ 0 0, u T ∑m−2 i 1 aiu ξi , where φ : R → R is an increasing homeomorphism and satisfies the relation φ xy φ x φ y for x, y ∈ R, which generalizes the usually p-Laplacian operator. An example applying the result is also presented. The main tool of this paper is a generalization of Leggett-Williams fixed point theorem, and the interesting points are that the nonlinearity f contains the first-order derivative explicitly and the operator φ is not necessarily odd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian

‎In this paper‎, ‎we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian‎ ‎dynamic equation on time scales‎. ‎We prove the existence at least three positive solutions of the boundary‎ ‎value problem by using the Avery and Peterson fixed point theorem‎. ‎The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly‎. ‎Our results ...

متن کامل

Existence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales

In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.

متن کامل

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

متن کامل

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

Multiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic

The aim of this article is to establish the existence of at least three‎ ‎solutions for a perturbed $p$-biharmonic equation depending on two‎ ‎real parameters‎. ‎The approach is based on variational methods‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010